

Structural Design of 38m Special Purpose Vessel in Aluminium Alloy

By Murat Tosun

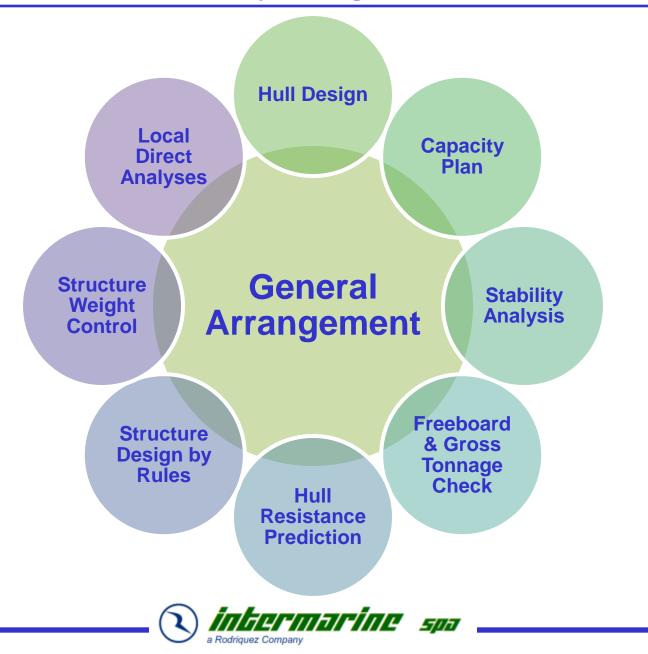
Supervisor: Prof. Dario Boote, University of Genoa Reviewer: Prof. André Hage, University of Liege

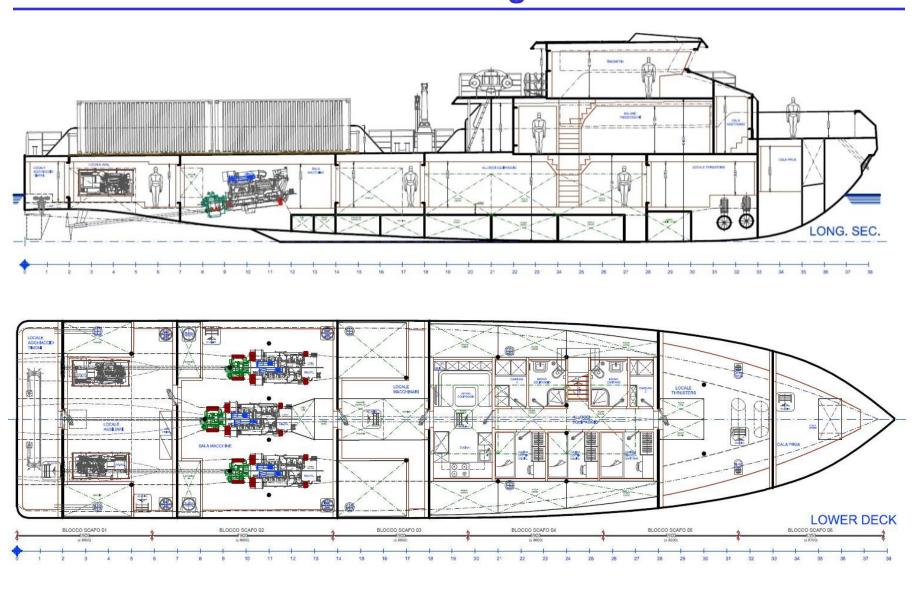
Intermarine & Rodriquez Group

Fast Ferries

Mega Yachts

Military Vessels

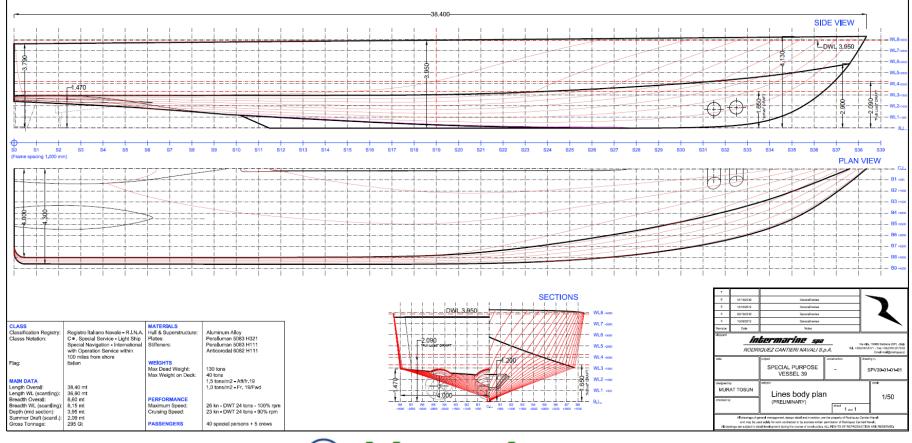



Project Description

Main Dimensions> Length overall> Breadth overall> Moulded depth> Gross Tonnage	38,4 meters 8,6 meters 3,95 meters 295
Propulsion≻ Main Engines≻ Propellers	3 x Cummins KTA 50 M2; 1343 Kw @ 1900 rpm 3 x 4 blade (fixed pitch)
 Load Capacity Passengers Deck cargo Cargo area Weight distributed on deck Deadweight 	40 technical 40 t with a maximum height of the CG of 1,2 m from cargo deck 60 m ² (max 1,5 tonne/m ²) 1,5 tonne/m ² for loading area and 1,0 tonne/m ² for remaining areas 134 tonnes (difference between the displacement at full load and Lightship)
 Service Performance ➢ Max. speed (@100% RPM) 26 knots ➢ Min. speed (@90% RPM) 23 knots 	(\mathbf{x}) intermarine sur

Preliminary Design Process

General Arrangement



Design by A. Battistini

Lines Plan

- Classification Registry: Registro Italiano Navale RINA
- Class Notation: RINA C

 A Special Service Light Ship, Special Navigation -International Operations with Service within 100 miles from shore
 Flag: Italian

Tank Arrangement & Capacity Plan

Tank Name	Intact Permeability	Damage Permeability	Fluid Type	Volume	Specific Gravity	Weight
	%	%		[m³]	[kg/m³]	[kg]
Rig water	98	95	Rig water	45,17	1,00	45,17
Gasoil	98	95	Gasoil	43,00	0,8524	36,65
Daily oil	98	95	Gasoil	6,42	0,8524	5,47
Overflow	98	95	Gasoil	1,34	0,8524	1,14
Sludge	98	95	Sludge	1,34	1,00	1,34
Lubricating oil	98	95	Lube Oil	0,95	0,92	0,87
Bilge	98	95	Bilge	2,97	1,00	2,97
Fresh water	98	95	Fresh Water	6,71	1,00	6,71
Black water	98	95	Black water	1,69	1,00	1,69
Grey water	98	95	Grey water	1,69	1,00	1,69
	(interm	arine su	17		

a Rodriquez Company

Stability Design Criteria

Heel to Starboard deg.

Criteria (Full load condition)	Value	Units	Actual	Status	Margin %
3.1.2.1: Area 0 to 30 shall not be less than (>=)	0.055	m.rad	0.34	Pass	520.73
3.1.2.1: Area 0 to 40 shall not be less than (>=)	0.09	m.rad	0.52	Pass	481.10
3.1.2.1: Area 30 to 40 shall not be less than (>=)	0.03	m.rad	0.18	Pass	505.31
3.1.2.2: Max GZ at 30 or greater shall not be less than (>=)	0.20	m	1.05	Pass	426.27
3.1.2.3: Maximum GZ angle shall not be less than (>=)	25.00	deg	32.70	Pass	30.91
3.1.2.4: Initial GMt shall not be less than (>=)	0.15	m	3.03	Pass	1918.67
3.1.2.5: Passenger crowding angle of equilibrium shall not be greater than (<=)	10.00	deg	0.80	Pass	91.83
3.1.2.6: Turn angle of equilibrium shall not be greater than (<=)	10.00	deg	3.40	Pass	66.49
3.2.2: Severe wind and rolling criterion: Area 1 / Area 2 shall not be less than (>=)	100.00	%	158.03	Pass	58.03

Hull Resistance Prediction

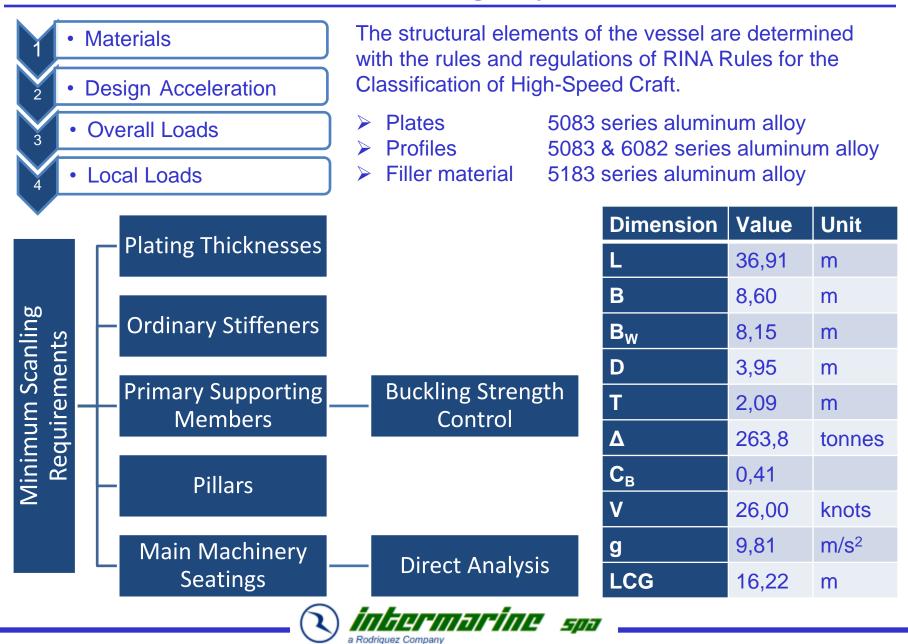
- ✓ Hull shape: Hard chine hull in pre-planing regime (1,0 < Fn_V < 3,0). In this speed range the dynamic lift begins to have some effects, but has still a modest entity.</p>
- Speed range: The resistance prediction algorithms are useful only within certain speed ranges; these limits are:

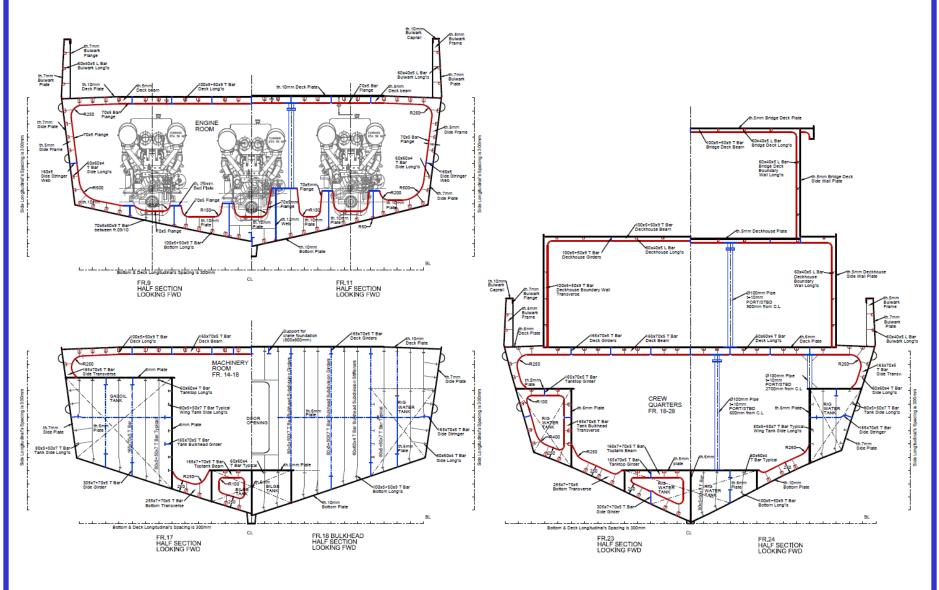
Algorithm	Low – speed limit	Actual (For trial condition)	High – speed limit
Savitsky (pre-planing)	$Fn_{V} = 1,0$	1,86	Fn _V = 2,0
Savitsky (planing)	Fn _b = 1,0	1,51	
Lahtiharju (hard chine)	$Fn_{V} = 1,5$	1,86	$Fn_{V} = 5,0$
Holtrop	$Fn_{L} = 0,0$	0,70	$Fn_{L} = 0.8$

Dimension limits for Savitsky algorithm:

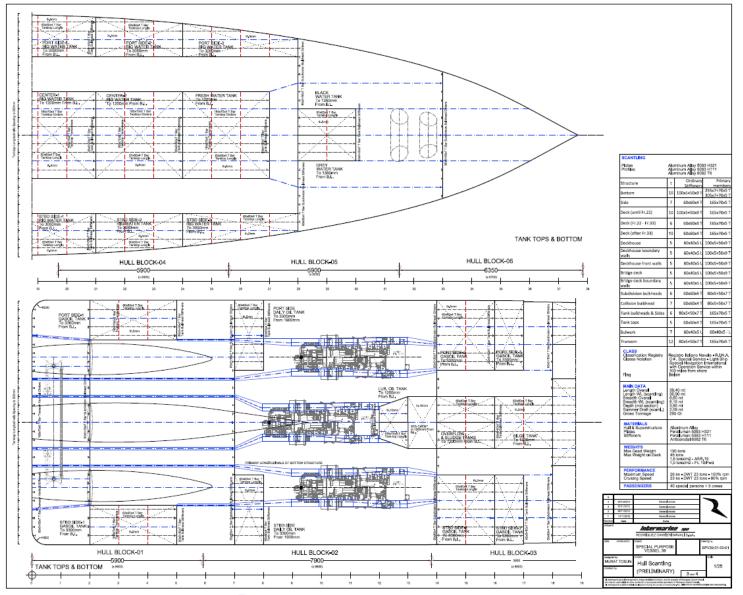
✓ Total resistance for Savitsky pre-planing method:

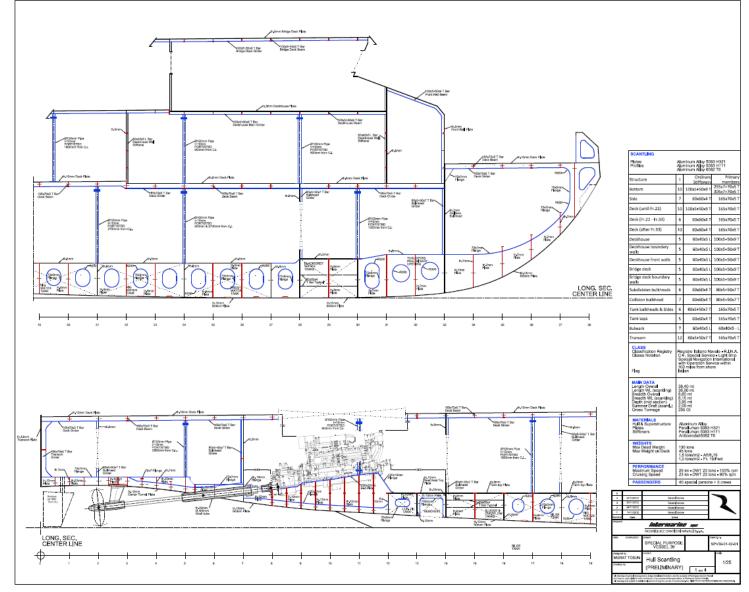
Dimensions	Minimum	Actual (For trial condition)	Maximum	R _T	Total resistance; either expressed as: $R_T = R_R + R_F + R_{Cor} + R_{App} + R_{Air}$ or $R_T = R_W + R_V + R_{Cor} + R_{App} + R_{Air}$
L/(V^1/3)	3,07	6,90	12,40		Correlation allowance resistance; additional resistance for
ie	3,70	15,78	28,60	R _{Cor}	correlation from model to ship scale
L/B	2,52	4,53	28,26		Appendage resistance; resistance of appendages such as
B/T	1,70	4,94	9,80	R _{App}	rudder, etc.
At/Ax	0	0,37	1	-	Air resistance; wind resistance of above-water hull and
LCG/L	-0,016	0,062	0,066	R _{Air}	superstructure

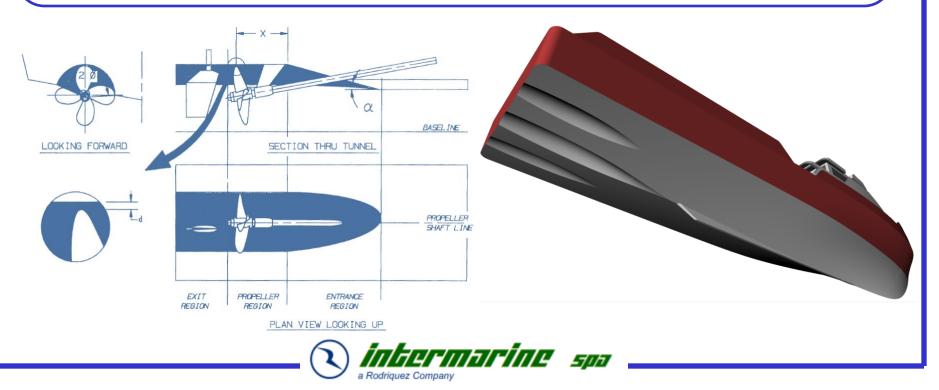

	Trial Con	dition	Arrival Condition		Half-Load Condition		Full-Load Condition	
Speed	Resistance	Power	Res.	Power	Res.	Power	Res.	Power
[kn]	[kN]	[kW]	[kN]	[kW]	[kN]	[kW]	[kN]	[kW]
23,0	114,10	2454,72	119,34	2567,34	154,31	3319,71	219,23	4716,34
26,0	127,92	3110,93	133,57	3248,42	171,24	4164,34	239,25	5818,44



Computational Fluid Dynamics Analysis


Dat	ta from S	avitsky Met	hod		Data fro	m CFD		Diffe	erence
Speed	Trim	Disp.	RT	Aft draft	Trim	Disp.	RT	Disp.	RT
[kn]	[deg]	[tonnes]	[kN]	[m]	[deg]	[tonnes]	[kN]	[%]	[%]
26	0,4	157,3	127,92	1,55	0,25	171,37	133,81	8,21	4,40
26	0,4	157,3	127,92	1,50	0,25	153,23	112,86	-2,65	-13,35
26	0,4	157,3	127,92	1,53	0,28	155,32	111,84	-1,27	-14,38
26	0,4	157,3	127,92	1,52	0,30	153,62	110,35	-2,40	-15,92
26	0,4	157,3	127,92	1,53	0,30	154,88	110,09	-1,56	-16,19
26	0,4	157,3	127,92	1,55	0,40	165,90	127,24	5,19	-0,54
26	0,4	157,3	127,92	1,65	1,00	165,93	115,03	5,17	-11,25
26	0,4	157,3	127,92	1,63	1,00	162,10 9.000	113,01	2,93	-13,23
26	0,4	157,3	127,92	1,63	1,00	^{6,750} 158,00	109,30	0,41	-17,07





Propeller Pockets Design

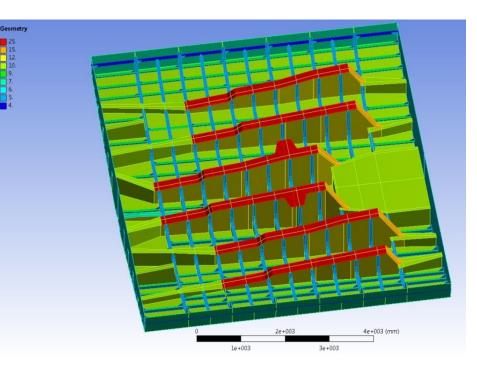
Tunnels which are also called as "propeller pockets" are provided in ship hulls to accommodate propellers under reduced draught conditions, thereby avoiding reduction of propeller diameter and consequent loss of efficiency.

Main design parameters:

- Shaft angle (Target is to achieve 6° from 8-9°)
- Tunnel depth
- Propeller (1.28m diameter; 4-bladed) tip clearance
- Longitudinal placement of propeller within the tunnel
- Longitudinal distribution of cross-sectional area in the tunnel exit

Structure Weight

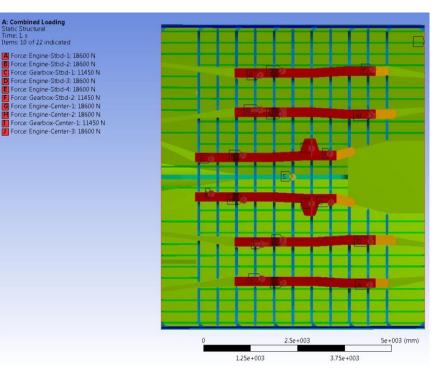
	Thickness [mm]	Plate area [m ²]	Weight [kg]
	5 (H321-5083 series aluminum alloy)	880	11703
1	6 (H321-5083 series aluminum alloy)	363	5793
S	7 (H321-5083 series aluminum alloy)	394	7331
PLATINGS	10 (H321-5083 series aluminum alloy)	534	14215
P	12 (H321-5083 series aluminum alloy)	44	1389
	15 (H321-5083 series aluminum alloy)	32	1261
	25 (H321-5083 series aluminum alloy)	6	399
	Typical Profile	Length [m]	Weight [kg]
	60x40x5 (H111-5083 series aluminum alloy)	461	582
B	60x60x4 (H111-5083 series aluminum alloy)	1040	1284
PROFILES	80x5+50x7 (H111-5083 series aluminum alloy)	606	1153
H	100x5+50x9 (H111-5083 series aluminum alloy)	1060	2552
	Ø100x10 (T6-6082 series aluminum alloy)	55	414
SUBTOTAL	E192 corion aluminum alloy	20/	48075 1442
Welding TOTAL	5183 series aluminum alloy	3%	49517


Objective & Scope

Main machinery foundations of the hull are investigated in detail for the structural analysis of the craft to ensure continuity of the reinforced elements

Direct Analysis Procedures Structural finite element (FE) model development Specification of the load cases Determining of boundary conditions Strength analysis Application of the checking criteria

Finite Element Model


Below figure presents FE model with given different thicknesses. There are 6 main girders for 3 engines and center engine girders are connected to lubricating oil tank and this tank is situated by the side of sea chest

Loading Condition in Still Water

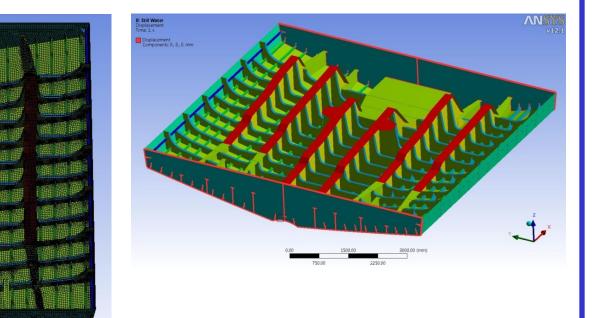
 Forces caused by engine weights and pillars through standard earth gravity
 Outer hydrostatic load in still water

Combined Loading Condition

- Forces of inertia due to the vertical acceleration a_v of the craft, considered in a downward direction
- Forces caused by engine weights and pillars through vertical acceleration

Mesh Model

Global mesh is created with following features:

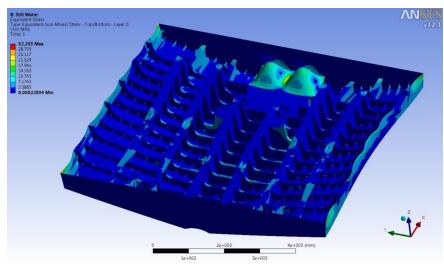

- Mesh element type: SHELL181
- Mesh method: Quadrilateral dominant
- Element size: 8,6 mm 43 mm

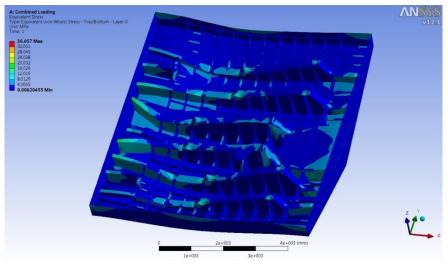
1e+003

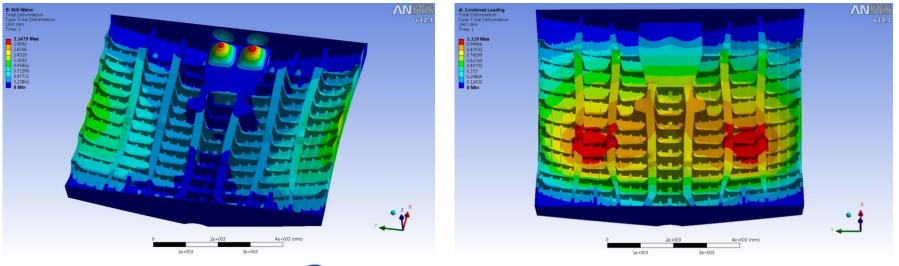
> Number of elements: 384878

Boundary Conditions

All longitudinal edges on bulkheads are fixed on X, Y and Z directions, rotations however are permitted

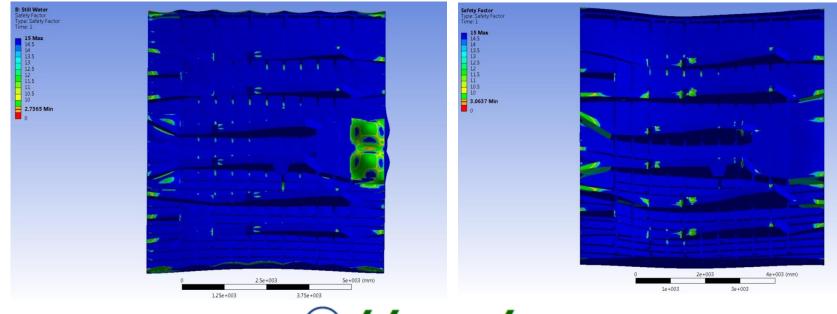



4e+003 (mm


3e+003

Loading Condition in Still Water

Combined Loading Condition



Checking Criteria

Still water loading condition	Highest stress [N/mm ²]	Check [N/mm ²]	Safety factor
Normal stress	17,30	69,77	4,03
Shear stress	8,56	41,86	4,89
Von-Mises equivalent bending stress	32,29	88,37	2,74
Combined loading condition	Highest stress [N/mm ²]	Check [N/mm ²]	Safety factor
Combined loading condition Normal stress	Highest stress [N/mm ²] 24,94	Check [N/mm ²] 87,21	Safety factor 3,49
č			

Conclusions

The hull resistance prediction is essentially momentous for developing hull lines at preliminary design stages. For this purpose Savitsky Method is applied primarily, then more accurate results are obtained by CFD applications and these results are compared with previous method. Meanwhile spray flow over the hull is observed even the resistance values are in a good range. To prevent this, using of "spray rails" under the chine is proposed.

Although the vessel is a high speed craft, it will work as a supply unit for offshore platforms to transport technical personnel, cargo on deck and liquid cargo. On the other hand, the structure design is developed according to High Speed Craft rules by directives of Classification Society.

In compliance with experiences of the shipyard, total structure weight, 50 tonnes, satisfied the predictions.

By considering experimental studies and recommendations of suppliers, partial tunnels are created under the hull and eventually shaft line angle is reduced 3° approximately.

Direct finite element analysis of engine foundations which have significant influence on structure is performed. Eventually high safety margins are gained for the scantling which is generated on the strength of previous projects of the shipyard.

Thank you for your attention!

